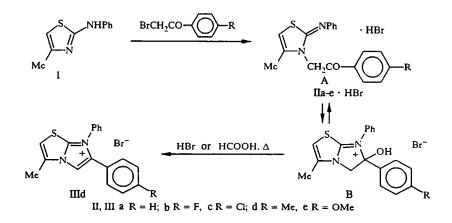
IMIDAZO[2,1-b]THIAZOLIUM SALTS BASED ON 2-PHENYLAMINO-4-METHYLTHIAZOLE

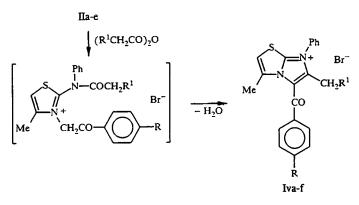

A. M. Demchenko, V. A. Chumakov, A. N. Krasovskii, V. V. Pirozhenko, and M. O. Lozinskii

Alkylation of 2-phenylamino-4-methylthiazole with substituted phenacyl bromides led to the synthesis of hydrobromides of 2-phenylimino-3-(p-R-phenacyl)-4-methylthiazoles. It was shown that, depending on the conditions of the cyclization of the last, 3-methyl-6-aryl-7-phenyl- or 3-methyl-5-aroyl-6-alkyl-7-phenyl-imidazo[2,1-b]thiazolium bromides can be synthesized. The spectral characteristics of the compounds synthesized were studied.

Among derivatives of imidazo[2,1-b]thiazole are found compounds possessing antiinflammatory [1-3], analgesic [4], hypoglycemic [5], antihistamine [6], as well as immune-promoting [7] action. One of the main methods for the synthesis of derivatives of the given heterocyclic system is based on the reaction of 2-aminothiazoles with different halogenoketones [6, 8, 9].

In the continuation of investigations [10] into the properties of N-substituted heterocyclic amidines, the reaction of 2-phenylamino-4-methylthiazole (I) with substituted phenacyl bromides led to the synthesis of intermediate compounds -2-phenylimino-3-acylaryl-4-methylthiazoline hydrobromides (IIa-e), which can exist in the two tautomeric forms A and B [11].

Analysis of the data of PMR and IR spectra (see Tables 1 and 2) indicates unambiguously that the compounds (IIa-e) occur in the open tautomeric form A in contrast to quaternary imidazo[1,2-a]pyridinium salts [10].


In fact, the protons of the methylene group of the phenacyl substituent in the PMR spectra of the hydrobromides of compounds (IIa-e) appear as a singlet in the region of 5.93-6.06 ppm, whereas the characteristic signals of the AB-system could be expected when the structure B is realized owing to the presence of an asymmetric center. Moreover, the IR spectra contain characteristic bands of stretching vibrations of the CO group in the region of 1680-1705 cm⁻¹, which confirms the structure A.

Chernigov Technological Institute, Chernigov 250027. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 833-836, June, 1997. Original article submitted August 1, 1996.

Com- pound	Empirical formula	Found, % Calculated, %		mp, °C	IR spectrum,	Yield,
		N	S		cm ⁻¹	%
Па	C18H16N2OS			143144	1705, 1625	
∏a•HBr	C ₁₈ H ₁₆ N ₂ OS · HBr	<u>6.88</u> 7,20	7.86 8,23	198199		40
∏b•HBr	C18H15FN2OS•HBr	<u>6.59</u> 6,88	<u>7.53</u> 7,86	211212		50
∏c∙HBr	C ₁₈ H ₁₅ ClN ₂ OS · HBr	<u>6.35</u> 6,61	<u>7.25</u> 7,56	214215	1700, 1600	48
IId-HBr	C19H18N2OS•HBr	<u>6.65</u> 6,95	<u>7.62</u> 7,94	215216	1700, 1610	39
∏e∙HBr	C19H18N2O2S•HBr	<u>6.45</u> 6,68	<u>7.36</u> 7,64	201202	1680, 1610	53
Шđ	C19H17BrN2S	<u>6.95</u> 7,27	<u>7.94</u> 8,31	255256	1618	60
IVa	C20H17BrN2OS	<u>6,50</u> 6,78	<u>7.42</u> 7,75	289290	1658, 1600	85
IV b	C20H16BrFN2OS	<u>6,24</u> 6,50	<u>7.13</u> 7,42	253254		89
IVc	C20H16BrCIN2OS	<u>6.02</u> 6,26	<u>6.87</u> 7,15	276277	1660, 1590	80
IVd	C21H19BrN2OS	<u>6,29</u> 6,56	<u>7.19</u> 7,49	274275	1650, 1605	83
IVe	C21H19BrN2O2S	<u>6,07</u> 6,32	<u>6.94</u> 7,22	239240	1650, 1610	80
IVf	C22H21BrN2OS	<u>6.10</u> 6,35	<u>6.97</u> 7,26	242243	1660, 1615	56

TABLE 1. Characteristics of the Compounds (IIa-e), (IIId), and (IVa-f)

The cyclization reaction of compounds (IIa-e) was studied using different dehydrating agents. It was established that the heating of compound (IId) with 48% HBr or 100% HCOOH results in the formation of the salt (IIId); the identity of the samples was shown by the PMR and IR spectral data presented in Tables 1 and 2, as well as the absence of a depression of the melting temperature in the mixed test. The structure of the salt (IIId) was confirmed as 3-methyl-6-(p-tolyl)-7-phenylimidazo[2,1-b]thiazolium bromide by the presence of the singlet signal of the proton at the position 5 in the PMR spectrum at 8.81 ppm.

IVa-e R^1 = H, f R = R^1 = Me

Treatment of the compounds (IIa-e) with acetic anhydride or propionic anhydride [for (IId)] led to the isolation of 3methyl-5-(p-R-benzoyl)-6-alkyl-7-phenylimidazo[2,1-b]thiazolium bromides (IVa-f). The structure of compounds (IVa-f) was confirmed by IR and PMR spectral data (see Tables 1 and 3). Thus, the IR spectra contain characteristic bands of stretching vibrations of the CO group in the region of 1650-1700 cm⁻¹. The PMR spectra register the singlet signals of protons of the methyl group at the position 6 in the region of 2.04-2.07 ppm (IVa-e) or the ethyl group at 0.74 ppm (t, CH₃) and 2.49 ppm (q, CH₂) (IVf).

TABLE 2. PMR Spectral Data of Compounds (IIa-e)

Com- pound	СН3	CH ₂ S	5-H	H _{arom}
Па	2,04 d*	5,48	5,95 q*	6,838,18 m
Па•HBr	2,22 s	6,04	6,86 s	7,398,16 m
∏b∙HBr	2,23 s	6,06	6,88 s	7,398,23 m
Пс•нвг	2,20 d	6,03	6,86 s	7,75 d, 8,14 d, 7,387,58 m
IId-HBr [†]	2,20 d	6,01	6,83 s	7,38 d, 8,03 d, 7,48 m
∏e•HBr†	2,19 d	5,93	6,78 s	7,17 d, 8,10 d, 7,247,56 m

J = 1.2 Hz

†The signal of the protons R = Me has the form of a singlet at 2.43 ppm [(IId)·HBr, R = Me] and 3.89 ppm [(IIe)·HBr, R = OMe].

TABLE 3. PMR Spectral Data of the Compounds (IIId) and (IVa-f)

Com- pound	o-CH₃ S	3-СН3	2-Н	H _{arom}
			+	
⊞d*	-	2,63 d	†	7,15 d, 7,25 d, 7,62 m,8,79 s
IVa	2,04	2,42 s	7,64 s	7,688,13 m
IVb	2,05	2,42 d	†	7,428,23 m
IVc	2,06	2,43 s	7,64 S	7,748,16 m
IVd*	2,05	2,39 s	7,65 s	7,49 d, 8,04 d, 7,757,90 m
IVe*	2,07	2,38 s	7,62 q	7,19 d, 8,11 d, 7,717,83 m
IVf *	‡	2,31 d	7,60 d	7,49 d, 8,03 d, 7,697,95 m

*The signal of the protons R = Me has the form of a singlet at 2.31 ppm for (IIId) (R = Me), 2.46 ppm for (IVd) (R = Me), 3.92 ppm for (IVe) (R = OMe), and 2.46 ppm for (IVf) (R = Me).

†The signal is superimposed by the H_{arom} signals.

 \pm 6-CH₂CH₃: 0.74 ppm (t, CH₃) and 2.49 ppm (q, CH₂).

It was noted that the treatment of compounds (IIa-e) with concentrated acetic acid does not lead to their cyclization, similarly described in the work [9].

EXPERIMENTAL

The IR spectra were taken on the UR-20 instrument using tablets of KBr. The PMR spectra were recorded on the Bruker-200 instrument (200 MHz) in the solution of DMSO- D_6 ; the internal standard was TMS.

The initial 2-phenylamino-4-methylthiazole was obtained by the method of the work [11].

2-Phenylimino-3-(p-R-phenacyl)-4-methylthiazole Hydrobromides [(IIa-e)·HBr]. To the solution of 1.9 g (0.01 mole) of 2-phenylamino-4-methylthiazole in 20 ml of propan-2-ol is added 0.01 mole of the corresponding substituted phenacyl bromide, and the mixture is boiled for 1 h. The solvent is evaporated in vacuo. The oily residue is triturated with acetone. The residue of the product (II)·HBr is filtered off and crystallized from the mixture of methanol—propan-2-ol.

3-Methyl-6-(p-tolyl)-7-phenylimidazo[2,1-b]thiazolium Bromide (IIId). A. The hydrobromide (IId) (1.4 g) is boiled for 10 h in 10 ml of 48% HBr. The solvent is evaporated *in vacuo*, and the oily residue is triturated with acetone. The residue of the bromide (IIId) is filtered off. The yield is 0.8 g. Crystallization is performed from propan-2-ol.

B. The hydrobromide (IId) (2 g) is boiled in 15 ml of 100% HCOOH for 3 h. The solvent is evaporated *in vacuo*. The residue is treated as in the experiment A. The yield is 1.4 g.

6-Alkyl-5-aroyl-3-methyl-7-phenylimidazo[2,1-b]thiazolium Bromides (IVa-f). The salts (IIa-e) (0.01 mole) are boiled for 1 h in 20 ml of acetic anhydride or propionic anhydride [for (IId)]. The solvent is evaporated *in vacuo*, and the oily residue is triturated with acetone. The residue of the bromide (IV) is filtered off. Crystallization is performed from propan-2-ol.

REFERENCES

- 1. P. E. Bender, D. Hill, P. H. Offen, K. Razgaitis, P. Lavanchy, O. D. Stringer, B. M. Sutton, D. E. Griswold, and M. Di Martino, J. Med. Chem., 28, 1169 (1985).
- 2. E. Abignente, F. Arena, and P. De Caprariis, Farmaco. Ed. Sci., 31, 880 (1976).
- 3. E. Abignente, F. Arena, and P. De Caprariis, Farmaco. Ed. Sci., 34, 417 (1979).
- 4. P. J. Sanfilippo, M. Urbanski, Y. B. Press, B. Dubinsky, and J. B. Moore, J. Med. Chem., 31, 2221 (1988).
- 5. R. M. Acheson, J. K. Stubbs, C. A. R. Baxter, and D. E. Kuhla, Ger. Offen., 2,444,890; Chem. Abs., 83, 79230 (1975).
- 6. M. Patra, S. K. Mahapatra, and B. Dash, J. Indian Chem. Soc., 51, 1031 (1974).
- 7. K. Noda, A. Nakagawa, and S. Migata, Jpn. Kobai Tokkyo Koho, 12, 393 (1979).
- 8. G. P. Kutrov, Yu. M. Valovenko, V. A. Kurg, E. N. Machkovskaya, and F. S. Babichev, Dokl. Akad. Nauk Ukr., No. 5, 39 (1989).
- 9. N. P. Grin', A. N. Krasovskii, and P. M. Kochergin, Khim. Geterotsikl. Soedin., No. 9, 1271 (1972).
- 10. A. I. Demchenko, V. A. Chumakov, K. G. Nazarenko, A. N. Krasovskii, V. V. Pirozhenko, and M. O. Lozinskii, Khim. Geterotsikl. Soedin., No. 5, 644 (1995).
- 11. K. É. Valter, Ring-Chain Isomerism in Organic Chemistry [in Russian], Zinatne, Riga (1978).
- 12. R. Elderfield, Heterocyclic Compounds [Russian translation], Vol. 5, IL, Moscow (1961).